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Abstract. We give a complete combinatorial characterization of homogeneous quadratic
identities of “universal character” valid for minors of quantum matrices over a field.
This is obtained as a consequence of a study of quantized minors of the so-called path
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1 Introduction

The idea of quantization has proved its importance to bridge commutative and non-
commutative versions of certain algebraic structures and promote better understanding
various aspects of the latter versions. One popular structure is the quantized coordinate
ring R = Oq(Mm,n(K)) of m× n matrices over a field K, where q is a nonzero element
of K, usually called the algebra of m× n quantum matrices. Here R is generated by entries
(indeterminates) of an m× n matrix X subject to Manin’s relations [11]: for i < ` ≤ m
and j < k ≤ n,

xijxik = qxikxij, xijx`j = qx`jxij, (1.1)

xikx`j = x`jxik and xijx`k − x`kxij = (q− q−1)xikx`j.

We study quadratic identities for minors of quantum matrices, or quantum minors.
For a discussion on aspects and applications of such identities, see e.g., [6, 7, 8, 9, 12]
(where the list is incomplete). We present a novel, and rather transparent, combinatorial
method which enables us to completely characterize and efficiently verify homogeneous
quadratic identities of universal character that are valid for quantum minors. The iden-
tities of our interest can be written as

∑(signiq
δi [Ii|Ji]q [I′i |J′i ]q : i = 1, . . . , N) = 0, (1.2)
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where δi ∈ Z, signi ∈ {+,−}, and [I|J]q denotes the quantum minor whose rows
and columns are indexed by I ⊆ [m] and J ⊆ [n], respectively. (Hereinafter, for a
positive integer n′, we write [n′] for {1, 2, . . . , n′}.) The homogeneity means that each
of the sets Ii ∪ I′i , Ii ∩ I′i , Ji ∪ J′i , Ji ∩ J′i is invariant of i, and the term “universal” means
that (1.2) should be valid independently of K, q and a q-matrix (a matrix whose entries
obey Manin’s relations and, possibly, additional ones). Note that any cortege (I|J, I′|J′)
may be repeated in (1.2) many times.

Our approach has two sources. The first one is the flow-matching method elaborated
in [5] to characterize quadratic identities for usual minors (viz. for q = 1). In that case
the identities are viewed as

∑(signi[Ii|Ji] [I′i |J′i ] : i = 1, . . . , N) = 0. (1.3)

In the method of [5], each cortege S = (I|J, I′|J′) determines a certain set M(S) of so-
called feasible matchings. The main theorem in [5] asserts that (1.3) is valid (universally)
if and only if the families I+ and I− of corteges Si with signi = + and signi = −,
respectively, are balanced, in the sense that the total families of feasible matchings for
corteges occurring in I+ and in I− are equal.

The second source is the path method due to Casteels [1, 2]. He associated with each
Cauchon diagram C of size m× n (see [3]) a certain directed planar graph G = GC with
m + n distinguished vertices r1, . . . , rm, c1, . . . , cn, and considered the m × n path matrix
PG = (pij) of G. This matrix possesses three important properties. (i) It is a q-matrix, and
therefore, xij 7→ pij gives a homomorphism of R to the corresponding algebra generated
by the pij. (ii) It admits an analog of Lindström’s Lemma [10]: for any I ⊆ [m] and
J ⊆ [n] with |I| = |J|, the minor [I|J]q of PG can be expressed via systems of disjoint
paths from {ri : i ∈ I} to {cj : j ∈ J} in G. (iii) Using Cauchon’s Algorithm [3] interpreted
in graph terms in [1, 2], one shows that if the diagram C is maximal (i.e., has no black
cells), then PathG becomes a generic q-matrix (see Corollary 3.2.5 in [2]).

In this work we consider a more general class of planar graphs, called SE-graphs;
they possess the above properties (i),(ii) as well. Our goal is to characterize quadratic
identities just for the class of path matrices of SE-graphs. Since this class contains a
generic q-matrix, the identities are automatically valid in R. As a result, we obtain
necessary and sufficient conditions for the quantum version (in Theorems 4.1 and 4.3),
namely: (1.2) is valid (universally) if and only if the families of corteges I+ and I− along
with the function δ are q-balanced, which now means the existence of a bijection between
the families of feasible matchings for I+ and I− that is agreeable with δ in a certain
sense. Note also that our method of establishing or verifying one or another universal
identity admits a rather transparent implementation.

The paper is organized as follows. Section 2 contains basic definitions and statements.
Section 3 describes important ingredients and tools in our method: double flows (pairs
of path systems related to corteges (I|J, I′|J′)), feasible matchings, and transformations
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of double flows by use of exchange operations. The crucial working tool exhibited here is
Corollary 3.5 which follows from a result on exchange operations proved in [4] (stated in
Theorem 3.4). Based on these, Section 4 outlines a proof of the sufficiency: (1.2) is valid
if the corresponding I+, I−, δ are q-balanced (Theorem 4.1). Also Section 4 contains
an algorithm of recognizing the q-balancedness and one illustration and finishes with
Theorem 4.3 (without a proof) concerning the necessity of the q-balancedness.

For proofs in detail, additional results and numerous applications, see the full version
posted in arXiv:1604.00338[math.QA].

2 Basic definitions and statements

Paths in graphs. Throughout, by a graph we mean a directed graph. A path in a graph
G = (V, E) is a sequence P = (v0, e1, v1, . . . , ek, vk) such that each ei is an edge connecting
the vertices vi−1, vi. An edge ei is called forward if it is directed from vi−1 to vi, denoted
as ei = (vi−1, vi), and backward otherwise (when ei = (vi, vi−1)). The path P is called
directed if it has no backward edge, and simple if all vertices vi are different. When k > 0
and v0 = vk, P is called a cycle, and called a simple cycle if, in addition, v1, . . . , vk are
different.

SE-graphs. A graph G = (V, E) of this sort (also denoted as (V, E; R, C)) satisfies the
following conditions:

(SE1) G is planar (with a fixed layout in the plane);
(SE2) G has edges of two types: horizontal edges, or H-edges, which are directed to the

right, and vertical edges, or V-edges, which are directed downwards (so each edge points
to either south or east, justifying the term “SE-graph”);

(SE3) G has two distinguished subsets of vertices: set R = {r1, . . . , rm} of sources and
set C = {c1, . . . , cn} of sinks; moreover, r1, . . . , rm are disposed on a vertical line, in this
order upwards, and c1, . . . , cn are disposed on a horizontal line, in this order from left to
right; each vertex of G belongs to a directed path from R to C.

We denote by W = WG the set V − (R ∪ C) if inner vertices of G. We also say that G
is an (m, n) SE-graph (where m := |R| and n := |C|). An example is drawn in Figure 1.

Remark 1. A representative special case is formed by the SE-graphs equivalent to Cauchon
graphs introduced in [1] (which are associated with Cauchon diagrams [3]). In this case,
R = {(0, i) : i ∈ [m]}, C = {(j, 0) : j ∈ [n]}, and W ⊆ [n]× [m]. When W = [n]× [m], we
refer to such a graph as the extended (m, n)-grid and denote by Γm,n.

Each inner vertex v ∈ W of an SE-graph G is regarded as a generator. We assign the
weight w(e) to each edge e = (u, v) ∈ E in a way similar to that for Cauchon graphs
in [1], namely:

(W1) w(e) := v if e is an H-edge with u ∈ R;

https://arxiv.org/abs/1604.00338
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Figure 1: An SE-graph with m = 3 and n = 4

(W2) w(e) := u−1v if e is an H-edge and u, v ∈W;
(W3) w(e) := 1 if e is a V-edge.
This gives rise to defining the weight w(P) of a directed path P = (v0, e1, v1, . . . , ek, vk)

to be the ordered (from left to right) product, namely:

w(P) := w(e1)w(e2) · · ·w(ek). (2.1)

The generators W are assumed to be subject to (quasi)commutation laws, which
match those for Cauchon graphs in [1]. More precisely, for distinct u, v ∈W,

(G1) if there is a directed horizontal path from u to v in G, then uv = qvu;
(G2) if there is a directed vertical path from u to v in G, then vu = quv;
(G3) otherwise uv = vu.

Quantum minors. It is convenient for us to visualize matrices in the Cartesian form: for
an m× n matrix A = (aij), the row indices i = 1, . . . , m are assumed to increase upwards,
and the column indices j = 1, . . . , n from left to right.

We denote by A(I|J) the submatrix of A whose rows and columns are indexed by
I ⊆ [m] and J ⊆ [n], respectively. Let |I| = |J| =: k, and let I consist of i1 < · · · < ik, and
J consist of j1 < · · · < jk. Then the q-determinant of A(I|J), or the q-minor of A for (I|J),
is defined as

[I|J]A,q := ∑σ∈Sk
(−q)`(σ) ∏k

d=1 aid jσ(d) , (2.2)

where the product under ∏ is ordered by increasing d, and `(σ) denotes the length
(number of inversions) of a permutation σ. The terms A and/or q in [I|J]A,q may be
omitted when they are clear from the context.

Path matrix. An important construction in [1] associates with a Cauchon graph G a
certain matrix, called the path matrix of G. This is extended to an arbitrary (m, n) SE-
graph G = (V, E), namely: the path matrix Path = PathG of G is meant to be the m× n
matrix whose entries are defined by

Path(i|j) := ∑P∈ΦG(i|j)
w(P), (i, j) ∈ [m]× [n], (2.3)
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where ΦG(i|j) is the set of directed paths from ri to cj in G. In particular, Path(i|j) = 0
if ΦG(i|j) = ∅. Thus, the entries of PathG belong to the K-algebra LG of Laurent
polynomials generated by the set W of inner vertices of G subject to (G1)–(G3).

Flows. Let Em,n be the set of pairs (I|J) with I ⊆ [m], J ⊆ [n] and |I| = |J|. Borrowing
terminology from [5], for (I|J) ∈ Em,n, a set φ of pairwise disjoint directed paths from the
source set RI := {ri : i ∈ I} to the sink set CJ := {cj : j ∈ J} in G is called an (I|J)-flow.

The set of (I|J)-flows φ in G is denoted by Φ(I|J) = ΦG(I|J). We assume that the
paths forming φ are ordered by increasing the source indices: if I consists of i(1) <
i(2) < · · · < i(k) and J consists of j(1) < j(2) < · · · < j(k), then `-th path P` in φ begins
at ri(`), and therefore, P` ends at cj(`) (which follows from the planarity of G, the ordering
of sources and sinks in the boundary of G and the fact that the paths in φ are disjoint).
We write φ = (P1, P2, . . . , Pk) and (similar to path systems in [1]) define the weight of φ

to be the ordered product

w(φ) := w(P1)w(P2) · · ·w(Pk). (2.4)

Generalizing a q-analog of Lindström’s Lemma shown for Cauchon graphs in [1], one
can express minors of path matrices via flows as follows.

Theorem 2.1 ([4]). Let G be an (m, n) SE-graph. Then for the path matrix Path = PathG and
for any (I|J) ∈ Em,n, there holds

[I|J]Path,q = ∑φ∈Φ(I|J) w(φ). (2.5)

An important fact is that the (quasi)commutation relations for the entries of PathG
are similar to those for the canonical generators xij of the quantum algebra R in (1.1).

Proposition 2.2. For an SE-graph G, the entries of its path matrix PathG satisfy Manin’s
relations.

(A proof, omitted here, can be given as an easy application of our flow-matching method.)
This implies that the map xij 7→ PathG(i|j) determines a homomorphism ofR to the sub-
algebra of LG generated by the entries of PathG, i.e., PathG is a q-matrix for any SE-graph
G. A sharper property holds for the graph associated with the m× n Cauchon diagram
without black cells. Namely, Corollary 3.2.5 in [2] relying on Cauchon’s Algorithm [3]
gives the following property (in our terms).

Theorem 2.3. Let G be the extended grid Γm,n (defined in Remark 1). Then PathG is a generic
q-matrix, i.e., xij 7→ PathG(i|j) gives an injective map of R to LG.

Due to this property, the universal quadratic relations that we establish for minors
of path matrices of SE-graphs turn out to be automatically valid for the algebra R of
quantum matrices, and vice versa.
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3 Double flows, matchings, and exchange operations

Quadratic identities of our interest involve products of the form [I|J]q[I′|J′]q, where (I|J),
(I′|J′) ∈ Em,n. This leads us to a study of pairs of flows φ ∈ Φ(I|J) and φ′ ∈ Φ(I′|J′).
We need some definitions and conventions, borrowing terminology from [5].

Given I, J, I′, J′, φ, φ′ as above, we call the pair (φ, φ′) a double flow in G. Let

I◦ := I − I′, J◦ := J − J′, I• := I′ − I, J• := J′ − J, (3.1)
Yr := I◦ ∪ I• and Yc := J◦ ∪ J•.

Then |I| = |J| and |I′| = |J′| imply that |I◦| − |I•| = |J◦| − |J•| and that |Yr|+ |Yc| is
even. As before, we refer to the quadruple (I|J, I′|J′) as a cortege, and call (I◦, I•, J◦, J•)
the refinement of (I|J, I′|J′), or a refined cortege.

We interpret I◦ and I• as the sets of white and black elements of Yr, respectively, and
similarly for J◦, J•, Yc, and visualize these objects by use of a circular diagram in which
the elements of Yr (respectively Yc) are disposed in the increasing order from left to right
in the upper (respectively lower) half of a circumference O. For example, if I◦ = {3},
I• = {1, 4}, J◦ = {2′, 5′} and J• = {3′, 6′, 8′}, then the diagram is viewed as in the left
fragment of the picture below. (Here, to avoid a mess, we denote the elements of Yc with
primes.)

1
3

4

2'

3'
5'

6'

8'

Matchings. A partition M of Yr t Yc into 2-element sets is called a perfect matching on
Yr t Yc (where t stands for the disjoint union). We say that π ∈ M is: an R-couple if
π ⊆ Yr, a C-couple if π ⊆ Yc, and an RC-couple if |π ∩ Yr| = |π ∩ Yc| = 1 (as though π

“connects” two sources, two sinks, and one source and one sink, respectively). A perfect
matching M is called a feasible matching for (I◦, I•, J◦, J•) (and for (I|J, I′|J′)) if:

(FM1) for each π = {i, j} ∈ M, the elements i, j have different colors if π is an R- or
C-couple, and have the same color if π is an RC-couple; and

(FM2) M is planar, in the sense that the chords connecting the couples in the circum-
ference O are pairwise non-intersecting.

The set of feasible matchings for (I◦, I•, J◦, J•) is denoted byMI◦,I•,J◦,J• , orM(I|J, I′|J′).
One can show that this set is nonempty whenever Yr t Yc 6= ∅. The right fragment of
the above picture illustrates an instance of feasible matchings.
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Next we return to a double flow (φ, φ′) as above, and our aim is to associate to it a
feasible matching for (I◦, I•, J◦, J•). Let Vφ and Eφ denote the sets of vertices and edges
of G occurring in φ, respectively; and similarly for φ′. Consider the subgraph 〈U〉 of G
induced by the set of edges

U := Eφ4Eφ′ ,

(where A4B denotes the symmetric difference (A− B) ∪ (B− A) of sets A, B). Then a
vertex v of 〈U〉 has degree 1 if v ∈ RI◦ ∪ RI• ∪CJ◦ ∪CJ• , and degree 2 or 4 otherwise. We
modify 〈U〉 by splitting each vertex v of degree 4 in 〈U〉 into two vertices v′, v′′ disposed
in a small neighborhood of v so that the edges entering (respectively leaving) v become
entering v′ (respectively leaving v′′):

v

v'

v''

The resulting graph, denoted as 〈U〉′, is planar and has vertices of degree only 1 and
2. Therefore, 〈U〉′ consists of pairwise disjoint (non-directed) simple paths P′1, . . . , P′k and,
possibly, simple cycles Q′1, . . . , Q′d. The corresponding images of P′1, . . . , P′k (respectively
Q′1, . . . , Q′d) give paths P1, . . . , Pk (respectively cycles Q1, . . . , Qd) in 〈U〉. When 〈U〉 has
vertices of degree 4, some of the latter paths and cycles may be self-intersecting and may
“touch”, but not “cross”, each other. It is not difficult to see the following

Lemma 3.1. (i) k = (|I◦|+ |I•|+ |J◦|+ |J•|)/2;
(ii) the set of endvertices of P1, . . . , Pk is RI◦∪I• ∪ CJ◦∪J• ; moreover, each Pi connects either

RI◦ and RI• , or CJ◦ and CJ• , or RI◦ and CJ◦ , or RI• and CJ• ;
(iii) in each path Pi, the edges of φ and the edges of φ′ have different directions (say, the former

edges are all forward, and the latter ones are all backward).

Thus, each Pi is representable as a concatenation P(1)
i ◦ P(2)

i ◦ . . . ◦ P(`)
i of forwardly

and backwardly directed paths which are alternately contained in φ and φ′, called the
segments of Pi. We say that Pi is an exchange path. The endvertices of Pi determine a pair
of elements of Yr t Yc, denoted by πi. Then M := {π1, . . . , πk} is a perfect matching on
Yr tYc. Moreover, it is feasible, since (FM1) follows from Lemma 3.1(ii), and (FM2) from
the fact that P′1, . . . , P′k are disjoint simple paths in 〈U〉′. We denote M as M(φ, φ′), and
for π ∈ M, denote the exchange path Pi corresponding to π by P(π).

Corollary 3.2. M(φ, φ′) ∈ MI◦,I•,J◦,J• .

Flow exchange operation. It rearranges a given double flow (φ, φ′) for (I|J, I′|J′) into
another double flow (ψ, ψ′) for some ( Ĩ| J̃, Ĩ′| J̃′), as follows. Fix a submatching Π ⊆
M(φ, φ′), and combine the exchange paths related to Π, forming the set of edges

E := ∪(EP(π) : π ∈ Π).
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(where EP(π) is the edge set of P(π)). Using Lemma 3.1, one can show the following

Lemma 3.3. Let VΠ := ∪(π ∈ Π). Define

Ĩ := I4(VΠ ∩Yr), Ĩ′ := I′4(VΠ ∩Yr), J̃ := J4(VΠ ∩Yc), J̃′ := J′4(VΠ ∩Yc).

Then the subgraph ψ induced by Eφ4E gives a ( Ĩ| J̃)-flow, and the subgraph ψ′ induced by
Eφ′4E gives a ( Ĩ′| J̃′)-flow in G. Furthermore, Eψ ∪ Eψ′ = Eφ ∪ Eφ′ , Eψ4Eψ′ = Eφ4Eφ′

(= U), and M(ψ, ψ′) = M(φ, φ′).

We call the transformation (φ, φ′)
Π7−→ (ψ, ψ′) in this lemma the flow exchange operation

for (φ, φ′) using Π ⊆ M(φ, φ′). Clearly the exchange operation applied to (ψ, ψ′) using
the same Π returns (φ, φ′).

So far our description has been close to that given for the commutative case in [5].
From now on we will essentially deal with the quantum version. The next theorem serves
the main working tool in our arguments; its proof, based on a bulk of combinatorics on
paths and flows, is given in [4].

Theorem 3.4. Let φ be an (I|J)-flow, and φ′ an (I′|J′)-flow in G. Let (ψ, ψ′) be the double
flow obtained from (φ, φ′) by the flow exchange operation using a single couple π = {i, j} ∈
M(φ, φ′). Then:

(i) when π is an R- or C-couple and i < j,

w(φ)w(φ′) = qw(ψ)w(ψ′) in case i ∈ I ∪ J;
w(φ)w(φ′) = q−1w(ψ)w(ψ′) in case i ∈ I′ ∪ J′;

(ii) when π is an RC-couple, w(φ)w(φ′) = w(ψ)w(ψ′).

An immediate consequence from this theorem is the following.

Corollary 3.5. For an (I|J)-flow φ and an (I′|J′)-flow φ′, let (ψ, ψ′) be obtained from (φ, φ′)
by the flow exchange operation using a set Π ⊆ M(φ, φ′). Then

w(φ)w(φ′) = qζ◦−ζ•w(ψ)w(ψ′), (3.2)

where ζ◦ = ζ◦(I|J, I′|J′; Π) (respectively ζ• = ζ•(I|J, I′|J′; Π)) is the amount of R- or C-
couples π = {i, j} ∈ Π such that i < j and i ∈ I ∪ J (respectively i ∈ I′ ∪ J′).

Indeed, the flow exchange operation using the whole Π reduces to performing, step
by step, the exchange operations using single couples π ∈ Π (taking into account that
for any current double flow (η, η′) occurring in the process, the sets Eη ∪ Eη′ and Eη4Eη′ ,
as well as the matching M(η, η′), do not change; cf. Lemma 3.3). Then (3.2) follows from
Theorem 3.4.
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4 Quadratic identities and the q-balancedness

As before, we consider an (m, n) SE-graph G = (V, E; R, C) and deal with q-minors
[I|J] = [I|J]Path,q of its path matrix Path = PathG. In this section, based on Corollary 3.5
and developing a quantum version of the flow-matching method elaborated for the com-
mutative case in [5], we establish sufficient conditions of a general form on quadratic
relations for q-minors to be valid independently of G and some other data (mentioned
in Remark 2 below), referring to them as “universal quadratic identities”.

Relations that we deal with are of the form

∑I qα(I|J,I′|J′)[I|J][I′|J′] = ∑K qβ(K|L,K′|L′)[K|L][K′|L′], (4.1)

where α, β are integer-valued, I is a family of corteges (I|J, I′|J′) ∈ Em,n × Em,n (with
possible multiplicities), and similarly for K. (Then (4.1) is equivalent to (1.2) with δ

corresponding to (α, β).) We assume that I and K are homogeneous, in the sense that for
any (I|J, I′|J′) ∈ I and (K|L, K′|L′) ∈ K,

I ∪ I′ = K ∪ K′, J ∪ J′ = L ∪ L′, I ∩ I′ = K ∩ K′, J ∩ J′ = L ∩ L′. (4.2)

Moreover, we shall see that only the refinements (I◦, I•, J◦, J•) and (K◦, K•, L◦, L•) are
important, whereas the sets I ∩ I′ and J ∩ J′ are, in fact, indifferent.

To formulate our validity criterion, we need some definitions and notation.
• A tuple (I|J, I′|J′; M), where (I|J, I′|J′) ∈ I and M ∈ MI◦,I•,J◦,J• (cf. (FM1)–(FM2)),

is called a configuration for I . The family of all configurations for I is denoted by C(I).
Similarly, we define the family C(K) of configurations for K.
• Define M(I) to be the family of all matchings M (with possible multiplicities)

occurring in the members of C(I). Define M(K) in a similar way.
• Families I and K are called balanced (borrowing terminology from [5]) if there exists

a bijection (I|J, I′|J′; M)
γ7−→ (K|K′, L|L′; M′) between C(I) and C(K) such that M = M′.

In other words, I and K are balanced if M(I) = M(K).
• Families I and K along with functions α : I → Z and β : K → Z are called

q-balanced if there exists a bijection γ as above such that, for each (I|J, I′|J′; M) ∈ C(I)
and for (K|K′, L|L′; M) = γ(I|J, I′|J′; M), there holds

β(K|K′, L|L′)− α(I|J, I′|J′) = ζ◦ − ζ•. (4.3)

(In particular, I ,K are balanced.) Here ζ◦, ζ• are defined according to Corollary 3.5.
Namely, ζ◦ = ζ◦(I|J, I′|J′; Π) and ζ• = ζ•(I|J, I′|J′; Π), where Π is the set of couples π ∈
M such that the colorings of π in the refined corteges (I◦, I•, J◦, J•) and (K◦, K•, L◦, L•)
are different. (Then ζ◦ (ζ•) is the number of R- and C-couples {i, j} ∈ Π with i < j
and i ∈ I◦ ∪ J◦ (respectively i ∈ I• ∪ J•).) We say that (K◦, K•, L◦, L•) is obtained from
(I◦, I•, J◦, J•) by the index exchange operation using Π.
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Theorem 4.1. Let I and K be homogeneous families on Em,n × Em,n, and let α : I → Z and
β : K → Z. Suppose that I ,K, α, β are q-balanced. Then (4.1) is valid for q-minors of the path
matrix of any (m, n) SE-graph G = (V, E; R, C).

Proof. We fix G and denote by D(I|J, I′|J′) the set of double flows for (I|J, I′|J′) ∈ I ∪K
in G. A summand concerning (I|J, J′|J′) ∈ I in the left side of (4.1) can be expressed via
double flows as follows, ignoring the factor of qα(·):

[I|J][I′|J′] =
(
∑φ∈ΦG(I|J) w(φ)

)
×
(
∑φ′∈ΦG(I′|J′) w(φ′)

)
= ∑(φ,φ′)∈D(I|J,I′|J′) w(φ)w(φ′)

= ∑M∈MI◦ ,I• ,J◦ ,J• ∑(φ,φ′)∈D(I|J,I′|J′) : M(φ,φ′)=M w(φ)w(φ′). (4.4)

The summand for (K|L, K′|L′) ∈ K in the right side of (4.1) is expressed similarly.
Consider a configuration S = (I|J, I′|J′; M) ∈ C(I) and suppose that (φ, φ′) is a

double flow for (I|J, I′|J′) with M(φ, φ′) = M (if such a double flow in G exists). Since
I ,K, α, β are q-balanced, S is bijective to some configuration S′ = (K|L, K′|L′; M) ∈ C(K)
satisfying (4.3). As explained earlier, the cortege (K|L, K′|L′) is obtained from (I|J, I′|J′)
by the index exchange operation using some Π ⊆ M. Then the flow exchange operation
applied to (φ, φ′) using this Π results in a double flow (ψ, ψ′) for (K|L, K′|L′) which
satisfies relation (3.2) in Corollary 3.5. Comparing (3.2) with (4.3), we observe that

qα(I|J,I′|J′)w(φ)w(φ′) = qβ(K|K′,L|L′)w(ψ)w(ψ′).

Furthermore, such a map (φ, φ′) 7→ (ψ, ψ′) gives a bijection between all double flows
concerning configurations in C(I) and those in C(K). Now the desired equality (4.1)
follows by considering the last term in expression (4.4) and the corresponding term in
the analogous expression concerning K.

As a consequence of Theorems 2.3 and 4.1, the following result is obtained.

Corollary 4.2. If I ,K, α, β as above are q-balanced, then relation (4.1) is valid for the corre-
sponding minors in the algebra R of quantum m× n matrices.

Remark 2. When speaking of a universal quadratic identity of the form (4.1) with homo-
geneous I and K, abbreviated as a UQ identity, we mean that it depends neither on
the SE-graph G nor on the field K and element q ∈ K∗, and that the index sets can be
modified as follows. Given (I|J, I′|J′) ∈ I , let A := I4I′, B := J4J′, S := I ∩ I′ and
T := J ∩ J′ Take arbitrary m̃ ≥ |A| and ñ ≥ |B|, disjoint sets Ã, S̃ ⊆ [m̃], and disjoint sets
B̃, T̃ ⊆ [ñ] with |Ã| = |A|, |B̃| = |B|, |S̃| − |T̃| = |S| − |T|. Let λ : A → Ã and µ : B → B̃
be the order preserving maps. Transform each (I|J, I′|J′) ∈ I into ( Ĩ| J̃, Ĩ′| J̃′), obtaining
a new family Ĩ on E m̃,ñ × E m̃,ñ, where

Ĩ := S̃ ∪ λ(I − S), Ĩ′ := S̃ ∪ λ(I′ − S), J̃ := T̃ ∪ µ(J − T), J̃′ := T̃ ∪ µ(J′ − T).
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Turn K into K̃ in a similar way. One can see that if I ,K, α, β are q-balanced, then so are
Ĩ , K̃, keeping α, β. Therefore, if (4.1) is valid for I ,K, then it is valid for Ĩ , K̃ as well.

One can say that identity (4.1), where all summands have positive signs, is written
in the canonical form. Sometimes, however, it is more convenient to consider equivalent
identities having negative summands in one or both sides (e.g., of the form (1.2)).

We can suggest a rather simple algorithm which has as the input a corresponding
quadruple I ,K, α, β and recognizes the q-balanced for it. Therefore, in light of Theo-
rems 4.1 and 4.3, the algorithm decides whether or not the given quadruple determines
a UQ identity of the form (4.1).
Algorithm. Compute the setMI◦,I•,J◦,J• of feasible matchings M for each (I|J, I′|J′) ∈ I ,
and similarly for K. For each instance M occurring there, extract the family CM(I) of
all configurations concerning M in C(I), and extract a similar family CM(K) in C(K).
If |CM(I)| 6= |CM(K)| for at least one instance M, then I and K are not balanced at
all. Otherwise for each M, we seek for a required bijection γM : CM(I) → CM(K) by
solving the maximum matching problem in the corresponding bipartite graph HM. More
precisely, the vertices of HM are the tuples (I|J, I′|J′; M) and (K|L, K′|L′; M) occurring
in CM(I) and CM(K), and such tuples are connected by edge in HM if they obey (4.3).
Find a maximum matching N in HM. If |N| = |CM(I)|, then N determines the desired
γM in a natural way. Taking together, these γM give a bijection between C(I) and C(K)
as required, implying that I ,K, α, β are q-balanced. And if |N| < |CM(I)| for at least
one instance M, then the algorithm declares the non-q-balancedness.

Example. Next we illustrate our method with one example. Recall that sets I, J ⊆ [n] are
called weakly separated if, up to renaming I and J, there holds (∗): |I| ≥ |J|, and J− I has
a partition {J1, J2} such that J1 < I− J < J2 (where we write X < Y if x < y for any x ∈ X
and y ∈ Y). Let k := |I| and ` := |J|. Leclerc and Zelevinsky [9] proved that: two quantum
flag minors [I] := [[k]|I]q and [J] := [[`]|J]q quasicommute, i.e., satisfy [I][J] = qc[J][I] for
some c ∈ Z, if and only if I and J are weakly separated. Moreover, assuming (∗), c is equal
to |J2| − |J1|. One can show “if” part of this theorem as follows. (For “only if” part,
a characterization of quasicommuting non-flag minors, and many other applications of
our method, see arXiv:1604.00338[math.QA].)

Let A := [k] − [`]. Assuming (∗), one can see that M([k]|I, [`]|J) has exactly one
feasible matching M; namely, J1 is coupled with the first |J1| elements of I − J, J2
is coupled with the last |J2| elements of I − J (forming all C-couples), and the rest of
I − J is coupled with A (forming all RC-couples). Observe that the index exchange
operation applied to the cortege ([k]|I, [`]|J) using the whole M swaps ([k]|I) and ([`]|J)
(as it changes the colors of all elements of (I − J) ∪ (J − I) ∪ A). Also the set of C-
couples of M consist of |J1| couples {i, j} with i < j and i ∈ J1, and |J2| couples {i, j}
with i < j and j ∈ J2. This gives ζ◦ = |J2| and ζ• = |J1|. Hence the (one-element)
families I = {([k]|I, [`]|J)} and K = {([`]|J, [k]|I)} along with α(([k]|I, [`]|J)) = 0 and

https://arxiv.org/abs/1604.00338
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β(([`]|J, [k]|I)) = |J2| − |J1| are q-balanced. Now “if” part (with c = |J2| − |J1|) follows
from Theorem 4.1.

Finally, we formulate (without a proof) a converse assertion to Theorem 4.1, saying
that the q-balancedness condition is necessary as well. This gives a complete characteri-
zation for the UQ identities on quantum minors.

Theorem 4.3. Let K be a field of characteristic zero and let q ∈ K∗ be transcendental over
Q. Suppose that I ,K, α, β (as in Section 4) are not q-balanced. Then there exists, and can be
explicitly constructed, an SE-graph G for which relation (4.1) is violated.
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